## Unit 9 Gircles

| Date | Target | Assignment | Done! |
| :---: | :---: | :---: | :---: |
| R 2-15 | 9.1 a | 9.1a Worksheet |  |
| F 2-16 |  | $10: 40$ Release |  |
| T 2-20 | 9.1 b | 9.1 b Worksheet |  |
| W 2-21 | 9.2 | 9.2 Worksheet |  |
| R 2-22 | REV | 9.1-9.2 Review |  |
| F 2-23 | Quiz | Quiz 9.1-9.2 |  |
| M 2-26 | 9.3 | 9.3 Worksheet |  |
| T 2-27 | $9.4 \mathrm{a} / 9.4 \mathrm{~b}$ | 9.4c Worksheet |  |
| W 2-28 | 9.4 c | 9.3-9.4 Review |  |
| R 3-1 | REV | Quiz 9.3-9.4 |  |
| M 3-5 | Quiz | 9.5 | 9.5 Worksheet |
| T 3-6 | Quiz | Review/Quiz 9.5 |  |
| W 3-7 | REV | Unit 9 Test Review |  |
| R 3-8 | REV | Unit 9 Test Review | Unit 9 Test |
| M 3-12 | Test | Unit 9 Test |  |

Target 1 - Understand, indentify and anply basic facts of a circle
Target 2 -Understand and apply information ahout angles formed inside of a circle
Target 3 - Understand and apply information alout angles formed inside of a circle
Target 4 - Identify and apply angle relationships of segments formed by tangents, chords, and secants to find unknown lengths
Target 5 - Write and apply information alout the equation of a circle

## Name:

| Vocaloulary | Definition |
| :---: | :---: |
| Circle |  |
| Radius |  |
| Diameter |  |
| Circumference |  |



| Vocaloulary | Definition |  |
| :---: | :--- | :---: |
| Central Angle |  |  |
| Arc Measure |  | Notation |
| Minor Arc |  |  |
| Major Arc |  |  |
| Semicircle |  |  |

## Facts of Measuring Arcs

1) The measure of the entire circle is $\qquad$
2) The measure of the major arc is the difference between
$\qquad$ and the measure of the related minor arc.
3) The measure of a semicircle is $\qquad$ .


## Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the
$\qquad$ of the measure of the two arcs.

## Example 1: Find Arc Measures

You may join a new bank and divide your money several ways, as shown in the circle. Find the indicated arc measures
A) Find $m \widehat{B D}$
B) Find $m \widehat{B C D}$


## Example 2: Solve problems ïnvolving circumference

Find the indicated measure
A) Circumference of a circle with radius 11 meters.
B) Radius of a circle with circumference 18 yards.

## Area of a Circle


$\qquad$
A =

Find the indicated measure.
A) Area of the face of the watch $r=4.2 \mathrm{~cm}$

B) Diameter of the CD
$A=201 \mathrm{~cm}^{2}$


## * YOU TRY NOW!

1. Find the indicated arc measure. a) $m \widehat{C D}$
b) $m \widehat{A D C}$

| 2) Find the radius. |
| :--- |
| 3) Find the area and the circumference. |

## 9. 1 Day2-Arc Length and Sectors

Target 1 - Understand, identify, and apply basic facts of a circle

| Vocalbulary <br> Arc Length - <br> In a circle, the ratio of the length of a given are TO the circumference is equal to the ratio of the measure of the arc TO 360 degrees. |
| :---: |
|  |  |

## Example 1: Find and use Arc Lengths

Use the diagram to find the indicated measure

1. Arc Length of $\widehat{A B}$
2. Arc Measure of $\widehat{R S}$

## Area of a Sector <br> Area of a secior

Vocab
Sector of a Circle

The ratio of a sector of a circle TO the area of the whole circle is equal to the ratio of the measure of the intercepted arc to 360 degrees.

Annotate Here
 TO 360 degrees.


## Example 2: Find the area of sectors

Find the areas of the sectors formed by $\angle R Q S$.


## VOU TRY NOWI

Find the indicated measure. 1. Arc length of $\widehat{A B}$
2) Find the radius.



2) Find the radius.
4) BONUS EXTRA Find the perimeter of the shaded region


## 9.2-Angles Formed Inside of a Gircle

Target 2 - Understand and apply information about angles formed inside of a circle

## Vocaloulary

Tangent: $\qquad$
Chord: $\qquad$

Inscribed angle: $\qquad$

Intercepted arc: $\qquad$

## Measure of an Inscriben Angle and Polygons

The measure of an inscribed angle is $\qquad$


## Example 1: Use inscriben angles.

Find the indicated measure in Circle $P$.
a) $m \angle S$
b) $m \widehat{R Q}$


## Inscribed Ang/es, Same Intercented Arc

If two inscribed angles of a circle intercept the same arc, then the angles are $\qquad$ _.

Example 2: Finn the measure of an intercepted arc Find $m \angle H G J$ and $m \angle \widehat{H J}$. What do you notice about $m \angle H G J$ and $m \angle H F J$ ?


## Intersection of Tangent and a Chord

If a tangent and a chord intersect at a point on a circle, then the measure of each angle formed is the measure of its intercepted
arc.


## Example 3: Find aln angle or arc measures

Line $m$ is tangent to the circle. Find the indicated measure.
a) $m \angle 1$



## Intersection of a Tangent and Radius

In a plane, a line is tangent to a circle if and only if the line is


## Example 4: Verify a tangent to a circle

In the diagram, $\overline{R S}$ is a radius of Circle $R$. Is $\overline{S T}$ tangent to Circle $R$ ?


## Example 5: Find the ranius of a circle

In the diagram, B is a point of tangency. Find the radius $r$ of Circle $C$.


## Annotate Here

Relationship \#2 Tangent/Chord Inctercepted Arc

Relationship \#3 Tangent/Radius/Diame ter - Right Angle

## Angles Inside the Gircle Theorell

If two chords intersect $\qquad$ a circle, then the measure of each angle is
$\qquad$ the sum of the measure of the arcs intercepted by the angle and it's vertical angle.


## Example 6: Find anl angle measure inside a circle

Find the value of $x$. The cord $\overline{F H}$ and $\overline{G J}$ intersect the inside the circle.

## YOU TRY NOWI



1. Find $m \angle \widehat{C D}$.

2. Find $m \angle R T S$.

3. In the diagram, $K$ is a point of tangency. Find the radius $r$ of Circle L.

4. Find the value of $x$.


## 9.3-Angles Formed Outside of a Circle Target 3 - Understand and apply information about angles formed outside of a circle

| Angles Outside the Gircle Theorem |  |  |
| :---: | :---: | :---: |
| If a tangent and a secant, two tangents, or two secants outside a circle, then the measure of the |  |  |
| angle formed is $\qquad$ the $\qquad$ of the measures of the intercepted arcs. |  |  |
| Secant/Secant | Tangent/Tangent | Tangent/Secant |

## Example 1: Finn an angle measure outside a circle

Find the value of $x$. The tangent $\overrightarrow{G F}$ and the secant $\overrightarrow{G J i n t e r s e c t}$ outside the circle.


## * VOU TRYNOWI

1. Find the indicated measure or the value of the variable.

2. Find the value of $x$.


## 9.4a - Properties of Tanyents <br> Targetituounderstand and apply relationships of seyments formed hy tanyents, chords, and seconds to find unknown lengths

## Intersection of Tangent Segments Outside the Gircle

Tangent segments from a common eternal point are


Example 1:Appplying the Property
$\overline{Q R}$ is tangent to Circle $C$ at $R$ and $\overline{Q S}$ is tangent to Circle $C$ at $S$. Find the value of $x$.

VOU TRYNOWI

1. $\overline{R S}$ is tangent to Circle $C$ at $S$ and $\overline{R T}$ is tangent to Circle $C$ at $T$. Find the value of $x$.


### 9.41b-Properties of Secants

Target 4 - Understannd and apply relationships of seyments formed hy tanyents, chords, and secants to find unknown /engths

## Segments of Secants Theorem

If two $\qquad$ share the same endpoint outside a
circle, then the products of the lengths of $\qquad$ secant segment and its external segments equals the product of the lengths of the other secant segment and its external segment.

Example 1: Find the value of RT.

*OU TRYNOWI

## 1. Find the lemgth of hoth secants.



## 2. Find the Iength of both secants.



## 9.4c- Properties of Chords

Target 4 - Understand and apply relationshijss of seyments formed by tanyents, chords, and secants to find unknown Iengths

## Gongruency in Minor Arcs Using Gorresponding Chords

In the same circle, or in congruent circles, are congruent if And only if their corresponding chords are congruent.
Example 1: Use congruent chords to find an arc measures
In the diagram, Circle $A$ is congruent to Circle $D, \overline{B C} \cong \overline{E F}$, and $m \widehat{E F}=125^{\circ}$. Find $m \widehat{B C}$


## Properties of Chords and its Diameter

If one chord is a perpendicular $\qquad$ of another chord, then the FIRST chord is a
$\qquad$ .


## GONVERSF

If a diameter of a circle is perpendicular to a chord, then the diameter the chord and its arc.

## Eongruent Chords

In the same circle, or in congruent circles, two chords are if and only if they are $\qquad$ from the center.
Example 3: Use the property of congruent chords In the diagram of Circle $F, A B=C D=12$. Find $E F$


## Segments of Chords Theorem

If two chords intersect in the interior of a circle, then the
$\qquad$ of the lengths of the segments of one chord is
$\qquad$ to the product of the lengths of the segments of the other chord.

## Example 2: Identify suecial segments and /ines

Find the length of ML and JK.


## VOU TRY NOW!

1. Use the diagram of circle to the lengths of both chords

2. Find the measures of $\widehat{C B}, \widehat{B E}$, and $\widehat{C D E}$.

3. If $m \widehat{T V}=121^{\circ}$, find $m \widehat{R S}$.

4. Suppose $A B=27$ and $E F=$ $G F=7$. Find $C D$. Then, explain how you know!



Example 2: Write the standard equation of a circle
The point $(-3,4)$ is on a circle with center $(-1,2)$. Write the standard equation of the circle

Step 1: Find the radius using the Pythagorean Theorem

Step 2: Write the standard equation of the
 circle

## Example 3: Graph a Eircle

The equation of the circle is $(x-2)^{2}+(y+3)^{2}=16$. Graph the circle.


1) Write the equation of the circle shown.

2) Write the standard equation of a circle with center $(0,-5)$ and radius 3.7.
3) The point (-1, 2) is on a circle with center (3, -3). Write the standard equation of the circle.
4). The equation of a circle is $(x+2)^{2}+(y-1)^{2}=9$. Graph the circle.

