Unit 8 Similarity and Trigonometry

Date	Target	Assignment	Done!
M 1-22	8.1a	8.1a Worksheet	
T 1-23	8.1b	8.1b Worksheet	
W 1-24	8.2a	8.2a Worksheet	
R 1-25	8.2b	8.2b Worksheet	
F 1-26	Quiz	Quiz 8.1-8.2	
M 1-29	8.3a	8.3a Worksheet	
T 1-30	8.3b	8.3b Worksheet	
W 1-31	8.3c	8.3c Worksheet	
R 2-1	8.3 Rev	8.3 Review	
F 2-2	Quiz	Quiz 8.3	
M 2-5	8.4a	8.4a Worksheet	
T 2-6	8.4b	8.4b Worksheet	
W 2-7	8.4 Rev	8.4 Review	
R 2-8	Quiz	Quiz 8.4	
F 2-9	Review	Unit 8 Test Review	
M 2-12	Review	Unit 8 Test Review	
T 2-13	Test	Unit 8 Test	

Target 8.1: Solve problems using the Pythagorean Theorem 8.1a – Applying the Pythagorean Theorem

8.1b – Converse of the Pythagorean Theorem

Target 8.2: Solve problems using similar right triangles

8.2a– Use Similar Right Triangles

8.2b- Special Right Triangles (45-45-90 & 30-60-90 Triangles)

Target 8.3: Apply trigonometric ratios to determine unknown sides and angles

8.3a – Apply Trigonometric Ratios (Set up only)

8.3b – Apply Trigonometric Ratios (Find the missing side)

8.3c-Find the Missing Angle and Solve Right Triangle

Target 8.4 Understand, use and apply the Law of Sines and the Law of Cosines

8.4a – Law of Sines

8.4b - Law of Cosines

Name:

	ιαιγσι Ι – ουινσ μΓυ	blems using the Pythagord	ean Theorem
<u>xample 1: Apply the</u> A right triangle ho vith a length 3. W	<i>Pythagorean Theorem</i> as a hypotenuse of le Vhat is the length of t	ngth 10 and one leg he other leg?	<u>Annotate Here</u>
Example 2: Apply the 15-foot ladder l 8 feet from the adder? State you	P ythagorean Theorem eans against a wall. wall, how far up the v ur answer to the near	If the base of the ladder wall is the top of the est tenth of a foot.	
Vocabulary: <u>Pythagorean Tri</u> Pythagorean re Common Trinles	Pythagorean Ti <u>ple:</u> a set of three int lationship.	iples egers that satisfy the	
<u></u>			
3,4,5	6, 8, 10	9, 12, 15	
3,4,5 5, 12, 13	6, 8, 10 10, 24, 26	9, 12, 15 15, 36, 39	
3,4,5 5, 12, 13 7, 24, 25	6, 8, 10 10, 24, 26 14, 48, 50	9, 12, 15 15, 36, 39 21, 72, 75	
3,4,5 5, 12, 13	6, 8, 10 10, 24, 26	9, 12, 15 15, 36, 39	

Unit 8 Right Triangles and Trigonometry 2017 - 2018

Honors Geometry

Unit 8 Right Triangles and Trigonometry 2017 - 2018	Honors Geometry
1. An isosceles triangle has a base measuring 24 meters, and its two congruent sides each measure 15 meters. Find the area of the triangle, to the nearest square meter.	<u>Annotate Here</u>
2. A right triangle has two legs, one with length 5 inches and the other with length 6 inches. What is the perimeter of the triangle?	
3. Find two other sets of Pythagorean triples using the given sides of a triangle: 16, 30, 34.	
2. ~ 18.81 in or 11+root 61 inches 3. sample 1: 8, 15, 17 sample 2: 64, 240, 272	

272 **YouTrykow** 1. 108 meters squared

4

Unit 8 Right Triangles and Trigonometry 2017 - 2018 *Example 2: Applying the Triangle Inequality Theorem*

A triangle has one side of length of 14 and another lengths 10. Describe the possible of the third side.

Example 3: Classify triangles

Can segments with lengths of 2.8 feet, 3.2 feet, and 4.2 feet form a triangle? If so, would the triangle be acute, right, or obtuse?

Nou try now!

1) With the given side lengths, 15, 18, $3\sqrt{61}$, classify the triangle to be <u>acute</u>, <u>obtuse</u>, or <u>right</u>.

2. Can segments with lengths 6.1 inches, 9.4 inches, and 11.3 inches form a triangle? If so, would the triangle be acute, right, or obtuse?

3. Does a triangle with side lengths 50 inches, 120 inches, and 130 inches form perpendicular lines?

Collination J. Right Trangle 3. Yes, hcute Triangle can determine that the side lengths form a right triangle

Unit 8 Right Triangles and Trigonometry 2017 - 2018

8.2a– Use Similar Right Triangles Target 2: Solve problems using similar right triangles

The Attitude of a Right Triangle

If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are ______ to the original triangle AND to each other.

Example 1: Identify similar triangles

Identify similar triangles in the diagram.

Example 2: Find the length of the hypotenuse

A cross section of a group of seats at a stadium shows a drainage pipe \overline{BD} that leads from the seats to the inside of the stadium. What is length of the drainage pipe?

Unit 8 Right Triangles and Trigonometry 2017 - 2018 *Example 3: Use a geometric mean*

Find the value of y in the triangle.

~				
F A	3	rt Leg	Long Leg	Hypotenuse
, X	15			
К		,		
E	<i>D</i>			
	Triangle			
	Medium			
	Triangle			

YOU TRY NOW!

1) Find the value of x.

2) To find clearance of an overpass, you need to find the height of the concrete support beam. You use a cardboard square to line up the top and bottom of the beam. Your friend measures the vertical distance from the ground to your eye to be 5 feet, and the distance from you to the beam to be 6.9 feet. Approximate the total height of the beam.

2. x = 9.522; Total Height: = 14.422 feet

8.2b— Special Right Triangles (45-45-90 & 30-60-90 Triangles) Target 8.2: Solve problems using similar right triangles

Unit 8 Right Triangles and Trigonometr	ry 2017 - 2018	Honors Geometry
Use special right triangles to solve	e the following problems	<u>Annotate Here</u>
1. A triangle has sides that measure 2, $2\sqrt{3}$, and 4. What would be best description for this triangle?	2. One leg of an isosceles right triangle measures 1 unit. What is the exact length of the hypotenuse?	
3. The leg opposite the 30° angle length of 5. What is the length of 3 ° 10 ° 1 ° 2 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10 ° 10	e of a 30-60-90 triangle has a f the hypotenuse?	
		9

8.3a – Apply Trigonometric Ratios (Set up only) Target 3: Apply trigonometric ratios to determine unknown sides and angles

<u>Vocabulary</u>

Trigonometry:

How to use SOH-CAH-TOA

sinD	cosD	tanD
sinM	cosM	tanM

<u>Example 1: Find sine ratios</u>

Find sinU and sinW. Write each answer as a decimal rounded to the hundredths place.

Example 2: Find cosine ratios

Find *cosS* and *cosR*. Write each answer as a decimal rounded to the hundredths place.

Example 3: Find tangent ratios

Find tanS and tanR. Write your answer as a decimal rounded to the hundredths place.

8.3b – Apply Trigonometric Ratios (Find the missing side) Target 3: Apply trigonometric ratios to determine unknown sides and angles

Unit 8 Right Triangles and Trigonometry 2017 - 2018 VOU TRY NOW!

1) Find the height h of the lighthouse to the nearest foot.

Honors Geometry

Annotate Here

When solving these problems, where is the best place to start?

2) You walk from one corner of a basketball court to the opposite corner. Write and solve a proportion using a trigonometric ratio to approximate the distance of the walk.

3) You are 50 feet from the screen at a drive-in movie. Your eye is on a horizontal line with the bottom of screen and the angle of elevation to the top of the screen is 58°. How tall is the screen?

Draw a picture that would illustrate this problem.

 $120270.881 \approx \frac{h}{000} = 22003 \text{ (I}$ $120270.881 \approx \frac{h}{001} = 22003 \text{ (I}$ $12761.0.08 \approx \frac{x}{000} = 82003 \text{ (E 1}201.04.001 \approx \frac{h}{x} = 2003 \text{ (I}$ $12761.0.08 \approx \frac{x}{000} = 82003 \text{ (E 1}201.04.001 \approx \frac{h}{x} = 2003 \text{ (I}$

8.3c—Find the Missing Angle and Solve Right Triangles Target 3: Apply trigonometric ratios to determine unknown sides and angles

Unit 8 Right Triangles and Trigonometry 2017 - 2018	Honors Geometry
 YOU TRY NOW! 1) Approximate angle A to the nearest tenth of a degree. 1) Approximate angle A to the nearest tenth of a degree. 	<u>Annotate Here</u>
2) What do we use the "inverse" SIN/COS/TAN function for?	
3) You are building a track for a model train. You want the track to incline from the first level to second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3°?	
first level 96 in. Not drawn to scale	
4) Solve a right triangle that has a 50° angle and a 15-inch hypotenuse. (Draw a picture)	
Yealingian 1. 51.34 degrees 2. When 2 sides of a triangle are known to find the measurement of 1 of the two acute angles. 3. Yes, the angle of elevation is 2.38 degrees. 4. Missing angle = 40; legs = 9.64, 11.49	

Name:

8.5a – Apply Law of Sines

Target 5: Understand, use, and apply the law of sines and law of cosines.

Example 2: Find the measure of a missing angle in a triangle. Find $m \angle C$.

Solve the triangle.

14 mi

В

8 m

61°

Geometry (H) Unit 8 – Similarity and Trigonometry Name:

8.5b – Apply Law of Cosines

Target 5: Understand, use, and apply the law of sines and law of cosines.

Law of Cosines

If $\triangle ABC$ has sides of length *a*, *b*, and *c*, then:

 $a² = b² + c² - 2bc \cos A$ $b² = a² + c² - 2ac \cos B$

 $c^2 = a^2 + b^2 - 2ab\cos C$

а

75°

A

29

В

25

When to use Law of Cosines: <u>2 sides and an included angle</u> OR <u>3 sides</u>

Example 1: Find a missing side in a triangle. Find *a*.

Example 2: Find the measure of a missing angle in a triangle. Find $m \angle A$.

Example 3: Find missing measurements in a triangle. Solve the triangle.

