Unit 8 Similarity and Trigonometry

Date	Target	Assignment	Done!
M 1-22	8.1a	8.1a Worksheet	
T 1-23	8.1b	8.1b Worksheet	
W 1-24	8.2a	8.2a Worksheet	
R 1-25	8.2b	8.2b Worksheet	
F 1-26	Quiz	Quiz 8.1-8.2	
M 1-29	8.3a	8.3a Worksheet	
T 1-30	8.3b	8.3c Worksheet	
W 1-31	8.3c	8.3 Review	
R 2-1	8.3 Rev	8.4a Worksheet	
F 2-2	Quiz	8.4b Worksheet	
M 2-5	8.4a	8.4 Review	
T 2-6	8.4b	Quiz 8.4	
W 2-7	8.4 Rev	Quiz	Unit 8 Test Review
R 2-8	Uniew	Unit 8 Test	
F 2-9	Review	Test	2-12
T 2-13	Reven		

Target 8.1: Solve problems using the Pythagorean Theorem
8.1a - Applying the Pythayorean Theorem
8.11- Gonverse of the Pythayorean Theorem

Taryet 8.2: Solve problems using similar right triangles
8.2a- Use Similar Right Triangles
8.2D- Special Right Triangles [45-45-90 \& 30-60-90 Triangles]

Target 8.3: Apply trigonometric ratios to determine unknown sides and angles
8.3a - Apply Trigonometric Ratios [Set up only]
8.3h-Apply Trigonometric Ratios IFind the missing side]
8.3c- Finn the Missing Angle and Solve Right Triangle

Target 8.4 Understand, use and apply the Law of Sines and the Law of Cosines
8.4a - Law of Sines
8.41- Law of Cosines

8.1a - Applying the Pythagorean Theorem Target 1-solve problems using the Pythagorean Theorem

Example 1: Apply the Pythayorean Theorem

A right triangle has a hypotenuse of length 10 and one leg with a length 3 . What is the length of the other leg?

Example 2: Apply the Pythayorean Theorem

A 15 -foot ladder leans against a wall. If the base of the ladder is 8 feet from the wall, how far up the wall is the top of the ladder? State your answer to the nearest tenth of a foot.

Pythagorean Triples

Vocabulary:
Pythagorean Triple: a set of three integers that satisfy the Pythagorean relationship.

Common Triples

Pythagorean Triples		
Vocabulary:		
Pythagorean Triple: a set of three integers that satisfy the Pythagorean relationship.		
Common Triples		
3,4,5	6, 8, 10	9, 12, 15
5,12,13	10,24, 26	15, 36, 39
7,24, 25	14, 48, 50	21, 72, 75
8, 15, 17	16, 30, 34	24, 45, 51

Example 3: Apply the Pythagorean Theorem

A new Pythagorean Theorem triple can be formed from sides lengths 9, 12, and 15. Find two other sets.

1. An isosceles triangle has a base measuring 24 meters, and its two congruent sides each measure 15 meters. Find the area of the triangle, to the nearest square meter.
2. A right triangle has two legs, one with length 5 inches and the other with length 6 inches. What is the perimeter of the triangle?
3. Find two other sets of Pythagorean triples using the given sides of a triangle: $16,30,34$.

8.1b - Gonverse of the Pythayorean Theorem Target 1: Find the side lengths of a right triangle using the Pythagorean Theorem

Example 1: Verify right triangles

Tell whether the given triangle is a right triangle.

Classifying a Triangle By Angles Using its Side Lengths

Triangle Inequality Theorem (Thm5.12)

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Annotate Here

How is this different
than the Pythagorean Theorem?

What is an...
Acute Angle?

Obtuse Angle?

When you're given the lengths of the sides of a triangle, how do you know if they will form a triangle?

Example 2: Applying the Triangle Inequality Theorem

A triangle has one side of length of 14 and another lengths 10. Describe the possible of the third side.

Example 3: Classify triangles

Can segments with lengths of 2.8 feet, 3.2 feet, and 4.2 feet form a triangle? If so, would the triangle be acute, right, or obtuse?

VOU TRY NOW!

1) With the given side lengths, $15,18,3 \sqrt{61}$, classify the triangle to be acute, obtuse, or right.
2. Can segments with lengths 6.1 inches, 9.4 inches, and 11.3 inches form a triangle? If so, would the triangle be acute, right, or obtuse?
3. Does a triangle with side lengths 50 inches, $\overline{1} \overline{2} \overline{0}$ inches, and 130 inches form perpendicular lines?

әןбuD! + +4б!

8.2a- Use Similar Right Triangles Target 2: Solve problems using similar right triangles

The Attitude of a Right Triangle							
If the altitude is drawn to the hypotenuse of a right triangle,							
then the two triangles formed are to the							
original triangle AND to each other.							

Example 1: Inentify similar triangles
Identify similar triangles in the diagram.

A cross section of a group of seats at a stadium shows a drainage pipe $\overline{B D}$ that leads from the seats to the inside of the stadium. What is length of the drainage pipe?

Example 3: Use a geometric mean

Find the value of y in the triangle.

	irt Leg	Long Leg	Hypotenuse
Triangle			
Medium Triangle			

1) Find the value of x.

2) To find clearance of an overpass, you need to find the height of the concrete support beam. You use a cardboard square to line up the top and bottom of the beam. Your friend measures the vertical distance from the ground to your eye to be 5 feet, and the distance from you to the beam to be 6.9 feet. Approximate the total height of the beam.

8.2b- Special Right Triangles [45-45-90 \& 30-60-90 Triangles] Taryet 8.2: Solve problems using similar right triangles

Example 1: Using special right triangles

What are the lengths of the legs of this triangle?

Example 2: Using special right triangles

What are the angles of this triangle?

Use special right triangles to solve the following problems

1. A triangle has sides that measure $2,2 \sqrt{3}$, and 4 . What would be best description for this triangle?
2. One leg of an isosceles right triangle measures 1 unit. What is the exact length of the hypotenuse?
3. The leg opposite the 30° angle of a 30-60-90 triangle has a length of 5 . What is the length of the hypotenuse?

8.3a - Apply Trigonometric Ratios [Set up only]

 Taryet 3: Apply trigonometric ratios to determine unknown sides ann angles
Vocaloulary

Trigonometry:

\qquad

How to use SOH-GAH-TOA

$\sin D$	$\cos D$	$\tan D$
$\sin M$	$\cos M$	$\tan M$

Example 1: Find sine ratios

Find $\sin U$ and $\sin W$. Write each answer as a decimal rounded to the hundredths place.

Example 2: Find cosine ratios

Find $\cos S$ and $\cos R$. Write each answer as a decimal rounded to the hundredths place.

Example 3: Finn tangent ratios

Find $\tan S$ and $\tan R$. Write your answer as a decimal rounded to the hundredths place.

Annotate Here

Part 1

Part 2

Part 3

Part 4

1) Find $\sin B, \sin C, \cos B, \cos C$. Write each answer as a decimal rounded to the hundredths place.
a. $\sin B=$
b. $\sin C=$

C. $\cos B=$
d. $\cos C=$
2. Find tanB and tanC. Write each answer as a decimal rounded to the hundredths place.
a. $\tan B=$
b. $\tan C=$

Target 3: Apply trigonometric ratios to determine unknown sides and angles

Example 1: Find a missing length

Find the value of x.

Example 2: Find a missing length

Find the value of a and b.

Example 3: Find a length using an ang/e of iepression

Roller Coaster You are at the top of a roller coaster 100 feet above the ground. The angle of depression is 44°. About how far do you ride down the hill?

1) Find the height h of the lighthouse to the nearest foot.

2) You walk from one corner of a basketball court to the opposite corner. Write and solve a proportion using a trigonometric ratio to approximate the distance of the walk.

3) You are 50 feet from the screen at a drive-in movie. Your eye is on a horizontal line with the bottom of screen and the angle of elevation to the top of the screen is 58°. How tall is the screen?

7f9ZLO:88I $\approx \frac{001}{u}=$ z9um (l
MONAZIПOA

8.3c- Find the Missing Angle and Solve Right Triangles Target 3: Apply trigonometric ratios to determine unknown sides and angles

Example 1: Use an inverse function to finn an angle measure
Measure of $\angle A$ to the nearest tenth of a degree

Example 2: Use an inverse sine ann an inverse cosine

Let $\angle A$ and $\angle B$ be acute angles in two right triangles. Find the measure of angle A and angle B to the nearest tenth of a degree.
a. $\sin \mathrm{A}=\frac{7}{10}$
b. $\cos B=\frac{9}{13}$

Example 3: Solve a right triangle

Solve the right triangle. Round decimal answers to the nearest tenth.

Annotate Here

Part 1

Part 2

Make sure your calculator is set in degrees!

How is "cosB" said verbally? Translate below.

Label each vertex. How many parts of a triangle are there? Name them all in the right triangle below.

1) Approximate angle A to the nearest tenth of a degree.
2) What do we use the "inverse" SIN/COS/TAN function for?
3) You are building a track for a model train. You want the track to incline from the first level to second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3° ?

4) Solve a right triangle that has a 50° angle and a 15 -inch hypotenuse. (Draw a picture)
\qquad
Unit 8 - Similarity and Trigonometry

8.5a - Apply Law of Sines

Target 5: Understand, use, and apply the law of sines and law of cosines.

Law of Sines

If $\triangle A B C$ has sides of length a, b, and c
as shown, then $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.

When to use Law of Sines: $\underline{2}$ sides and 1 opposite angle OR $\quad \underline{2}$ angles and 1 opposite side

Example 1: Find missing sides in a triangle.

Find a and c.

Example 2: Find the measure of a missing angle in a triangle.
Find $m \angle C$.

Example 3: Find missing measurements in a triangle. Solve the triangle.

\qquad
Unit 8 - Similarity and Trigonometry

8.5b - Apply Law of Cosines

Target 5: Understand, use, and apply the law of sines and law of cosines.

Law of Cosines

If $\triangle A B C$ has sides of length a, b, and c, then:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

When to use Law of Cosines: $\underline{2}$ sides and an included angle OR $\underline{\mathbf{3} \text { sides }}$

Example 1: Find a missing side in a triangle.

Find a.

Example 2: Find the measure of a missing angle in a triangle.
Find $m \angle A$.

Example 3: Find missing measurements in a triangle. Solve the triangle.

