\qquad
\qquad

Target 1: Use the midsegment to determine unknown information within triangles

1) Find the value of x that makes $M N \| B C$.
$M N=x+1$
$B C=4 x-7$
$A N=-2 x+13$
$N C=-4 x+22$

$x=$ \qquad
2) $\overline{C D}$ is a bridge built over a lake, as shown in the figure below. What is the length of the bridge?

3) Find $M N$ if M and N are midpoints.

$$
M N=3 x+26
$$

$$
B C=x+22
$$

$M N=$ \qquad
4) The distance between bases
on a baseball field is 90 ft . A second baseman stands halfway between $1^{\text {st }}$ and $2^{\text {nd }}$ base and a shortstop stands halfway between $2^{\text {nd }}$ and $3^{\text {rd }}$ base, and the pitcher stands on the mound in the middle. Find the distance between the shortstop and the pitcher.

\qquad
5) Find the length of MB.
$M N=11$
$B C=22$
$A M=9$
$M B=$?

$M B=$ \qquad
6) Points M and N are midpoints.

Select all statements that must be correct.
(A) $\frac{A M}{M B}=\frac{M N}{B C}$
(B) $\frac{A N}{A C}=\frac{A M}{A B}$

(C) $\frac{A M}{A B}=\frac{M N}{B C}$
(E) Cannot be determined
7) $A M=6, A N=7, M N=10, B C=18$

Select all statements that must be correct.
(A) $\frac{M N}{B C}=\frac{A N}{N C}$
(B) $\frac{M N}{B C}=\frac{A N}{A C}$

$$
\text { (C) } \frac{A N}{A C}=\frac{A M}{M B}
$$

(D) $\frac{B C}{M N}=\frac{C A}{C N}$
(E) Cannot be determined

Target 2: Prove and apply properties of similar triangles (AA~, SSS~, SAS~)
Directions: Based on the given diagram, determine if the triangles are similar. If yes, identify the theorem that can be used to prove they are similar. Select all that apply.
8)

9)

10)

(a) Yes
(b) No
(c) AA~
(d) $\mathrm{SSS} \sim$
(e) SAS~
(a) Yes
(b) No
(c) AA~
(d) $\mathrm{SSS} \sim$
(e) SAS~
11) Find the distance across the lake.

12) A pole 3 meters tall casts a shadow 4 meters long. A nearby tree casts a shadow. John says he can solve for the height of the tree with $\frac{x}{3}=\frac{11}{4}$. Is he right?

13) In $\triangle J K L$ and $\triangle J U V, \angle K \cong \angle U$ and $\angle L \cong \angle V$. The length of side $L J=12$ and the length of side $V J=7$. If the length of side $U J=6$, what is the measure of side $J K$?
14) In $\triangle T V U$ and $\triangle H V G, \angle T \cong \angle H$ and $\angle U \cong \angle G$. The length of side
$U V=60$ and the length of side
$G V=10$. If the length of side
$T V=76$, what is the measure of side HV?
15) In $\triangle H G F$ and $\triangle H K L, \angle K \cong \angle G$ and $\angle L \cong \angle F$. The length of side $H L=8$ and the length of side $H F=59$. If the length of side $K H=12$, what is the measure of side $K G$?
16) Complete the following similarity proof.

Given: $\overline{V Z} \| \overline{Y X}$

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.

Geometry Unit 7 Review Answers

1. $x=4.5$
2. $M N=8.6$
3. Bridge length -1320 ft
4. Distance -45 ft
5. $M B=9$
6. B, C, D
7. E
8. A, C
9. B
10. A, E
11. 1.35 mi
12. Set up wrong proportion
13. $\mathrm{JK}=10.28$
14. $\mathrm{HV}=\frac{38}{3}$
15. $\mathrm{KG}=100.5$ or $\mathrm{KG}=78.5$ (depending on how you draw your similar triangles)
16.

Statement	Reason	
1. $\overline{V Z} \\| \overline{Y X}$	1. Given	
2. $\angle Z W V \cong \angle X W Y$	2. Vertical Angles	
3. $\angle Z \cong \angle X \quad$ OR $\angle V \cong \angle Y$	3. Alternate Interior Angles	
4. $\triangle Z V W \sim \triangle X Y W$	4. Angle Angle	

