Unit 7 Relationshins with Triangles

Date	Target	Assignment	Done!
M 1-8		Pre Assessment	
T 1-9	7.1a	7.1a Worksheet	
W 1-10	7.1b	7.1b Worksheet	
R 1-11	Quiz	7.2 Worksheet	
F 1-12	7.2 1-15	NO SCHOOL - MLK BIRTHDAY	
T 1-16	Rev	7.2 Review	
W 1-17	Quiz	Quiz 7.2	
R 1-18	Rev	Unit 7 Test Review	
F 1-19	Test	Unit 7 Test	

Taryet 7.1: Use the midsegment and proportionality to determine unknown information of triangles

Target 7.2: Prove and apply properties of similarity in triangles AA, SSS, SAS

Name:

7.1a - Use Proportionality Theorems
 Target 1-Use the midsegment and proportionality to determine unknown information of triangles

Triangle Proportionality Theorem

If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides

If $T U / / Q S$, then \qquad $=$ \qquad

Converse Triangle Proportionality Theorem

If a line divides two sides of a triangle proportionally, then it is parallel to the \qquad _.

If $\frac{R T}{T Q}=\frac{R U}{U S^{\prime}}$ then \qquad $=$ \qquad

Example 1: Finn the length of a segment

In the diagram, $\overline{Q S} \| \overline{U T}, R T=10, R S=12$, and $S T=6$. What is the length of $\overline{Q U}$?

Three Parallel Lines \& Two Transversals

If three parallel lines intersect TWO transversals then they divide the transversals

Example 2: Find the length of a segment

A farmer's land is divided by a newly constructed interstate.
The distance shown is in meters. Find the distance CA between the North Border and the South Border of the farmer's land.

Annotate Here

VOU TRYNOW!

1) Find the length of $\overline{K L}$.

2) Deteremine whether $\overline{Q T} \| \overline{R S}$.

3) Find the length of $\overline{A B}$.

7.11- Mïdseyment
 Target 1 - Use the midsegment and proportionality to determine unknown information of triangles

Vocaloulary:

Minsegment:

Midsegment Theorem: Parallel to third side

If a segment joins two triangle sides at their \qquad then it is parallel to the \qquad -.

Midsegment Theorem: Length is half of third side

If a segment joins two triangle sides at their midpoints, then its length is of the third side's length.

Example 1: Applying the midsegment theorem [A Iittle different from videod
In each triangle, M, N, and P are midpoints of the sides. Name the segment parallel to the one given.

$\overline{C D} \|$ \qquad
$D E=$
$N E=$

When there is a midsegment,
Q is a \qquad
$\overline{P Q}$ is a \qquad _ triangles are
P is a \qquad
P Q is a

$$
\begin{gathered}
\frac{A P}{A B}=- \\
\frac{P Q}{B C}=-=-
\end{gathered}
$$

Annotate Here

Compare $\triangle A P Q$ to $\triangle A B C$

VOU TRYNOWI

Find the missing length indicated.

1) Find $C D$

2) Find the length of $Q R$ and $W Y$.

3) Find $P Q$

4) Find the sum of the lengths of $S R$ and FD.

7.2-Prove Triangles Similar by AA ~, SSS~, SAS~

 Target 2-Prove and apply properties of similarity in triangles using AA~, SSS~, SAS~

Example 1: Use the AA Similarity Postulate
Determine whether the triangles are similar. If they are, write a similarity statement. Explain your reasoning.

Example 2: Show that triangles are similar
A) Prove: $\triangle R T V$ and $\triangle R Q S$ are similar

Statements	ROASOI
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Annotate Here

Part 1

B) Prove: $\triangle L M N$ and $\triangle N O P$ are similar

Statements	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

* VOU TRY NOWI

Determine whether the triangles are similar. If they are, write a similarity statement.
1)

2)

Side-Side-Side (SSS) Similarity

If the \qquad side lengths of two triangles are \qquad ,
then the triangles are similar.

Annotate Here

Part 2

Example 3: Use the SSS Similarity Postulate

Is either $\triangle D E F$ or $\triangle G H J$ similar to $\triangle A B C$?

Example 4: Use the SSS Similarity Theorem

Find the value of x that makes $\triangle A B C \sim \triangle D E F$.

Side-Angle-Side (SAS) Similarity

If an angle of one triangle is \qquad to an angle of a second triangle AND the lengths of the sides that include these angles are \qquad then the triangles
are \qquad .

Example 5: Similarity in Overlapning Triangles
Show that $\triangle V Y Z \sim \Delta V W X$.

Determine whether the triangles are similar. If they are similar,
write a similarity statement. Explain using the similarity statements and theorems

Annotate Here

