Unit 4 Reasoning and Angle Relationshijs

Date	Target	Assignment	Done!
M 10-16	4.1	4.1 Day 1 Worksheet	
T 10-17	4.1	4.1 Day 2 Worksheet	
W 10-18	Quiz	Quiz 4.1	
R 10-19	4.2	4.2 Day 1 Worksheet	
F 10-20	4.2	4.2 Day 2 Worksheet	
M 10-23	4.2	4.2 Day 3 Worksheet	
T 10-24	Quiz	Quiz 4.2	
W 10-25	Rev	Unit 4 Test Review	
R 10-26	Test	Unit 4 Test	

Taryet 4.1: Use deductive reasoning to make conclusions
Target 4.2: Use properties of enuality and congruence to prove relationships about angles

NAME:

Vocabulary

Deductive Reasoning: \qquad

Example 1: Use denuctive reasoning to find the solution to an algehraic equation

Solve for the variable X
Given: $3(x+5)=21$

Statements	Reason

Example 2: Use denuctive reasoning to write a two-column proof

Given: A, B, C, and D are collinear
$m A B=m C D$
Prove: $m A C=m B D$

Statements	Reason

Reasons to Consider:
(may use a reason more than once)

1. Segment Addition Postulate
2. Given
3. Substitution Property
4. Transitive Property of Equality
＊YOU TRY NOWI
Given：$\angle X Y Z \cong \angle M Y U$
Prove：$\angle X Y U \cong \angle M Y Z$

Statements	

	$Z X W 7$＝$\cap \lambda X 7$
	$Z X W 7$＝ $14 Z 7+Z X X 7$
әtDInłsod uo！t！pp \forall əןరu \forall	$Z X W 7$＝$\ 1277+\cap X W 7$
ә！DIntsod uo！t！pp әן＇u $^{\text {¢ }}$	$\cap X Z 7$ $n X Z 7+Z X X 7$
	$\cap X Z 7$ 三 $\cap 1277$
ひəヘ！૭	$\cap X W 7$＝$Z \lambda X 7$
uosDəy	słuəuəఫD\＄S

\qquad

Supplementary Angles: \qquad

Linear Pair: \qquad

Vertical Angles: \qquad

Draw and lahol the various angle relationships below

More Properties/Definitions (NOT IN VIDEO- FILL OUT ON OWN)

Linear Pair Postulate	If two angles form a linear pair, then they are -
	Definition of Complimentary Angles
Definition of Supplementary Angles	Two Angles that add up to
Definition of Perpendicular that add up to Lines	Perpendicular Lines form
Definition of Right Angles	An angle measuring

Name both pairs of vertical angles
.

\qquad
1.
2.

Example 1: Prove angles are complementary

Given: $A B$ is perpendicular to $B C(\overline{A B} \perp \overline{B C})$ Prove: $\angle 1$ and $\angle 2$ are complementary angles

Statements	Reason

Example 2: Use properties of complementary and supplementary amyles

Find the $m \angle D B C$ and $m \angle C A B$.

* VOU TRY NOWI

1) If $\angle R$ is supplementary to a $47 \circ$ angle and $\angle S$ is supplementary to a 56° angle, could they be vertical angles? Explain.
2) Make sure you understand all of the vocabulary in this lesson. Below, draw and label supplementary angles, complimentary angles, and vertical angles.

Supplementary Angles
Complimentary Angles Vertical Angles

b) Name two pairs of vertical angles.
c) Find the $m \angle G O F$.

d) Name the angles adjacent to $\angle G O H$.
4) Given that $\angle 3$ is a supplement of $\angle 4$ and $\angle 4=41^{\circ}$, find $m \angle 3$.
5) Find the value of x and y.

$$
\varsigma \backsim G=人!\varsigma Z^{\prime} \varepsilon=x(G
$$

