Unit 3 Similarily Figures and Dilations

Date	Target	Assignment	Done!
M 9-25	3.1	3.1 Worksheet	
T 9-26	3.2	3.2 Worksheet	
W 9-27	$3.1-3.2$	3.1-3.2 Review Worksheet	
R 9-28	Quiz	Quiz 3.1-3.2	
F 9-29	$3.3 a$	3.3a Day 1 Worksheet	
M 10-2	$3.3 a$	3.3b Day 2 Worksheet	
T 10-3	$3.3 b$	3.3b Day 2 Worksheet	
W 10-4	$3.3 b$	3.4 Worksheet	
R 10-5	3.4	Quiz 3.3-3.4	
F 10-6	Quiz	COLUMBUS DAY - NO SCHOOL	
M 10-9		Unit 3 Review	
T 10-10	Rev	PSAT DAY - NO CLASSES	
W 10-11		Unit 3 Review	
R 10-12	Rev	Unit 3 Test	
F 10-13	Test		

Target 1 - Use proportions to indentify lengths of corresponding parts inn similar figures

Taryet 2 - Perform and identify silations
Target 3 - Use ratios of lengths, perimeter, a area to determine unknown corresponding parts
3.3a -Use Scale Factor a Similarity to Determine Unknown Lengths in Polygons a Bircles
3.3b-Use Scale Factor \& Similarity to Determine Unknown Gorrespondiny Parts

Target 4 - Perform compositions of figures to determine the coordinates and location of the image

Name:

Taryet 1 - Use proportions to indentify Iengths of corresponding parts in similar figures Vocaloulary
Similar Polygons: change of \qquad or \qquad of a figure)

Linear Scale Factor: \qquad of the \qquad of sides.

Example 1: Use similarity statements

In the diagram, $\triangle A B C \sim \triangle D E F$.

1. List all pairs of congruent angles

2. Check that the ratios of corresponding side lengths are equal. Ratio 1:

Ratio 2:
Ratio 3:

Are all three ratios equal?
3. Write the ratios of the corresponding side lengths in a statement of proportionality.

Example 2: Find the linear scale factor

Determine whether the polygons are similar. If they are, write the similarity statement and find the scale factor of $A B C D$ to JKLM.

Step 1: Identify pairs of congruent angles
(Write congruent statements for all pairs)

Step 2: Show that corresponding side lengths are proportional.
Ratio 1:
Ratio 2:
Ratio 3:
Ratio 4:

Are all four ratios equal? If so, what is the linear scale factor?

1）The two figures below are similar．What is the linear scale factor？

2）The triangles are similar：$\triangle D E F \sim \Delta R Q P$ ．Which angles are congruent？

3）$\triangle A C B \sim \triangle D E F$ ．What is the length of $F E$ ？The triangles are similar．

4）$\triangle A B C \sim \triangle D E F$ ．What is the length of $\overline{E D}$ ？

5）HONORS ONLY $\triangle S T U \sim \triangle F E D . S T=x+2, U T=x^{2}-x-14, D E=2$ ，and $D E=2$ ．Find the measure of $\overline{S T}$ ．

6）HONORS ONLY The lengths of the sides of a triangle have a ratio 1：2：3．If the perimeter of the triangle is 60 yards，what is the length of the smallest side？

3.2-Dilations
 Target 2 - Perform and identify aliations

Vocaloulary

Dilation: a transformation where the \qquad or
of a figure occurs, where the sides are
\qquad or \qquad proportionally about a center. Dilations
do not change the \qquad of the \qquad .

Example 1: Identify alilations

Determine whether the dilation is a reduction (shrink) or an enlargement (expand). Find the scale factor of the dilation.
a)

- b)

Annotate Here

(shrinking, expanding, shrink, expand, measures, angles)

- The letter " k " is used represent "scale factor."

Linear Scale Factor Look at distance from the
\qquad to \qquad
\qquad $=\frac{\text { Prime Distance }}{\text { PreImage Distance }}$

How to tell if the image is an enlargement or reduction!
If $\mathbf{k}<1$, then the image is a

If $\mathbf{k}>1$, then the image is an

Examples of an ENLARGEMENTS

Example 3: Use scalar multiplication in a dilation

The vertices of triangle $A B C$ are $A(-3,0), B(0,6), C(3,6)$. Use scalar multiplication to find $A^{\prime} B^{\prime} C^{\prime}$ after a dilation with is center at the origin and a scale factor of $\frac{1}{3}$. Graph $A B C$ and its image.

1) HONORS ONLY Find the center of dilation of the two similar triangles below.

2) $\Delta \mathrm{ABC}$ is dilated to form triangle $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. If $\frac{A B}{A^{\prime} B^{\prime}}=7$, what is $\frac{B^{\prime \prime} C^{\prime}}{B C}$?

Annotate Here

3) The vertices of $\triangle \mathrm{ABC}$ is $A(-7,8), \mathrm{B}(7,-5), C(8,10)$. Find the vertices of the dilated image with scale factor of $\frac{1}{2}$. The center of the dilation is the origin.
4) HONORS ONLY The vertices of $\triangle \mathrm{ABC}$ is $\mathrm{A}(-3,4), \mathrm{B}(3,-2), \mathrm{C}(2,3)$. Find the vertices of the dilated image with scale factor of 2 . The center of the dilation is $(0,1)$.

3.3a -Use Scale Factor a Similarity to Determine Unknown Lengths in Polygons a Gircles Taryet 3 - Use ratios of lengths, perimeter \& area to determine unhnown corresponding parts

Example 1: Use similar polygons to find lengths of unknown corresuonding parts

The two rectangular swimming pools are similar. How far is it diagonall across each pool?

20 meters

Example 2: Use similar polygons to find /engths of unhown corresponding

 partsA high school wants to build a basketball court that is similar to an NBA basketball court, which is 94 feet long and 50 feet wide. Unforunately, the high school has room for a court that is 42 feet wide. How long should the court be, to the nearest foot?

QUESTIONS OR REFLEGTION

Write down at least 2 questions from this page to ask the next day.
1)
2)

Annotate Here

FUN FACT!

All circles are similar! All angles are congruent because circles have a 360° angle. All lengths are proportional because radii and circumferences are proportional!

The scale factor is

$$
\frac{7}{5} \text { or } \frac{5}{7}
$$

depending on which circle is the pre-image

1) Given the similar trapezoids $A B C D$ and EHGF below, identify the side that is proportional to $\overline{B C}$.

2) The vertex of B of octagon $A B C D E F G H$ is located at (24, -16). The octagon is dilated by a factor of 0.25 , with the center of dilation at the origin. What are the coordinates of B^{\prime} ?
3) Parallelograms $A B C D$ and EFGH are similar. What is the length of $\overline{G H}$?

3.30-Use Scale Factor a Similarity to Determine Unknown Gorrespondiny Parts Target 3 - Use ratios of lengths, perimeter, a area to determine unknown corresponding parts

PERIMETERS OF SIMIIAR POIVGONS

If two polygons are similar, then the ratio of their perimeters is equal to the ratios of their corresponding side lengths.

If KLMN ~ PQRS, then

$\frac{K L+L M+M N+N K}{P Q+Q R+R S+S P}=$

Example 1: Find the perimeter of similar figures

A larger cement court is being poured for a basketball hoop in place of a smaller one. The court will be 20 feet wide and 25 feet long. The old court was similar in shape, but only 16 feet wide.

Find the scale factor of the new court to the old court.

Find the ratio of the perimeters of the new court to the old court.

Areas of Similar Polygons

If two polygons are similar with the lengths of corresponding sides in the ratio $a: b$, then the ratio of their areas is \qquad : \qquad .

Scale Factor:

$$
\frac{\text { Side Length of Polygon } 1}{\text { Side Length of Polygon } 2}=
$$

\qquad

Ratio of Perimeters:

Ratio of the Areas:

What is the area of triangle $X Y Z$ ？$\triangle F M N \sim \triangle X Y Z$ ．

1）$\triangle A B C \sim \triangle D E F$ ．$A B=3$ inches，$D E=6$ inches，and the area of $\triangle A B C$ is 72 square inches．What is the area of $\triangle D E F$ ？

2）$\triangle A B C \sim \triangle D E F$ ．Both triangles are also isosceles triangles．$A B=5$ inches，$E F=21$ inches，and the altitude（height）of $\triangle A B C=4$ ．The altitudes bisects（divides EF into two congruent parts）the bottom sides of the triangles．Calculate the altitude of $\triangle D E F$ ．

Properties Isosceles Triangle

Base angles are congruent Two legs are congruent

3.4-Similarity and Transformations

Target 4 - Perform compositions of figures to determine the coordinates and location of the image

Example 1: Perform the composition

The vertices of a triangle $A B C$ is shown below. The triangle is translated 5 units to the right creating image $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. Then, the image is reflected across the x -axis. Finally, the triangle is dilated by a factor of 1.5. What are the final coordinates of triangle $A^{\prime \prime}$ ' $B^{\prime \prime}{ }^{\prime} C^{\prime \prime}$ '?

Coordinates after each transformation

$\triangle A B C$	$\Delta A^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}$	$\Delta \boldsymbol{A}^{\prime \prime} \boldsymbol{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$	$\Delta \boldsymbol{A}^{\prime \prime \prime} \boldsymbol{B}^{\prime \prime \prime} \boldsymbol{C}^{\prime \prime \prime}$
A (,)	A^{\prime},)	A' ${ }^{\prime \prime}$,)	A'" ${ }^{(1)}$)
B(,)	$B^{\prime}($,)	B' ${ }^{(1)}$	B'"' ,)
C(,)	C' ,)	C" ${ }^{\prime}$,)	C'"' ${ }^{\text {(}}$)

Annotate Here

Graph $y=2$

Graph $\mathrm{x}=-1$

Rotate K 270 degrees CCW direction

- YOU TRY NOWI

1. Describe the composition of transformations.

Give the exact translation, reflection or rotation using proper notation.

Transformation 1:

Transformation 2:
2. HONORS ONLY The endpoints of $\overline{C D}$ are $C(-2,3)$ and $D(0,-2)$. Graph the image of $\overline{\mathrm{CD}}$ after the composition.

Transformation 1: Dilate by a scale factor of 3 centered at ($-1,0$)
Transformation 2: Rotation: 90° clockwise about (-1, 1)
C^{\prime}
D^{\prime}
C"
D"

In your own words, describe what a composition is.

