Unit 2-Transformations

Target 1: Identify and determine congruent parts given a rigid motion.
Taryet 2: Perform and identifif rigid transformations of points, segments, and figures.
a. Perform and identify translations of points, segments, and figures.
b. Perform ann identify rotations of points, segments, ann figures.
c. Perform and identify reflections of points, segments, and figures.

Taryet 3: Perform multiple transformations to determine coordinates and location of the imaye.

YouTube Playlist:
https://goo.gl/bpGam

Date	Target	Assignment	Done!
T 9-5	2.1	2.1 Worksheet	
W 9-6	2.1	Tessellations	
R 9-7	Quiz	$\mathbf{2 . 1}$ Quiz	
F 9-8	2.2 a	2.2a Worksheet	
M 9-11	2.2 b	2.2b Worksheet	
T 9-12	2.2 b	2.2b Day 2	
W 9-13	2.2 c	2.2c Worksheet	
R 9-14	2.2	2.2 Quiz Review	
F 9-15	Quiz	$\mathbf{2 . 2}$ Quiz	
M 9-18	2.3	2.3 Day 1 Worksheet	
T 9-19	2.3	2.3 Day 2 Worksheet	
W 9-20	Quiz	2.3 Quiz	
R 9-21	Rev	Unit 2 Test Review	
F 9-22	Test	Unit 2 Test	

Name

2.1- Transformations and Conyruent Figures

Target 1-Identify and determine conyruent parts given a rigid motion

Vocaloulary

Iransformation: change of \qquad or \qquad of a figure.

Example 1: Using rigid motions

Identify the type of transformation shown.

Example 2: Gongruent Figures

The figures below are congruent. Identify the following: All pairs of congruent angles, congruent pairs of sides, and the congruent statement.

Annotate Here
(location, size)

What's a "rigid motion?"

What symbol is used to mean
"congruence?"
A) $\triangle A B C \cong \triangle X Z Y$
B) $\angle B A C \cong \angle X Z Y$
C) $\overline{A B} \cong \overline{Z X}$
D) $\triangle B C A \cong \triangle X Y Z$

E) $\triangle C B A \cong \triangle Y X Z$
2. What type of rigid motion relates the two shoes?

3. Is this an example of a rigid motion? Explain below.

Explanation:

1. The triangles below are congruent. Which of the statements below are true? Circle all that apply.
|

Vocabulary

Image - the \qquad of a figure after a transformation.

Pre image - the position of $a(n)$ \qquad prior to a transformation.
|sometry - a \qquad in which the pre-image and its image are \qquad .

Example 1: Translate a figure in the coordinate plane
Graph and label the quadrilateral $A B C D$ with vertices $A(-2,6), B(2,4), C(2,1)$, and $D(-2,3)$. Find the image of each vertex after the translation:
$(x, y) \rightarrow(x+3, y-3)$. Then graph the image using prime notation.

Write a rule for the translation of $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then verify that the transformation is an isometry.

*VOU TRY NOWI

1. Graph and label image of the figure using the translation given
a) 1 unit right \& 2 units down.
b) 4 units left \& 3 units up

Annotate Here

2. Graph and label the image of the figure using the given translation rule
C) $(x, y) \rightarrow(x-2, y+1)$

d) $(x, y) \rightarrow(x+4, y-4)$

3. Write the rule in proper notation to describe each translation Proper notation: $(x, y) \rightarrow(x \pm \ldots, y \pm \ldots)$
a) pre-image on the right

b) pre-image on the left

Rule:
4. Find the coordinates of the vertices of each figure after the given translation. 3 units to the right and 6 units down

QUESTIONS OR REFLEGTION

Write down at most 2 questions that you can ask the next day. BE SPECIFIC. 1.
2.

$\left(z-\kappa^{\prime} \downarrow+x\right) \leftarrow\left(\kappa^{\prime} x\right)$ (व६
$\left(z+\kappa^{\prime} \downarrow-x\right) \leftarrow\left(\kappa^{\prime} x\right)(\triangleright \varepsilon$

2.2h-Rotations

Target 2-Perform and identify rigid motions of points, segments, and figures

Vocaloulary

Rotation: a transformation that moves a figure along a \qquad path about a \qquad called the

Annotate Here

Angle of rotation: can be both \qquad and . Angle of rotation is defined by two rays where one goes from the \qquad to a starting point on the figure and the other goes from the center of rotation to the corresponding final point on the figure.

AT HOMF Example 1: Rotate the pre image 90 degrees about the origin

Write the coordinates of the pre-image and the image below.

REFLECTION/ANALYSIS

What do you notice about the corresponding coordinates of the preimage and the image? Write your predictions below

Having difficulty? Write a question below to ask the next day. REMEMBER to ask!

REFLECTION/ANALYSIS

What do you notice about the corresponding coordinates of the pre-image and the image? Write your thoughts below.

Having difficulty? Write a question below to ask the next day. REMEMBER to ask!

IN CLASS Example 3: Rotate the pre image 270 degrees ahout the origin
Write the coordinates of the pre-image and the image below.

2.2c-Reflections

Taryet 2 - Perform and identifif rigid motions of points, segments, and figures

Vocalulary

Line of Reflection: also called the \qquad ,
the axis that a figure is reflected about forming a congruent image that is symmetrical to the its original

AT HOME Example 1:Reflect each image over the given line of reflection to ftill coordinates of the imaye.

Write the coordinates of the pre-image and the image below.
(Over the x-axis)

Goordinates Pre-Image

(Over the y-axis)

REFLECTION/ANALYSIS

What is the line called that helps you visually see how a figure is being reflected?

What do you notice about the corresponding coordinates of the preimage and the image? Write your thoughts below.

Annotate Here

(axis of symmetry)

SCAN ME FOR EXAMPLE 1

Unit 2 Transformations 2017-2018
IN CLASS Example 2: Reflect each image over the given Iine of reflection to find coordinates of the image.
Write the coordinates of the pre-image and the image below
(Over the line of $x=3$)

Coordinates Pre-Image	Image		Goordinates Pre-Imaye	Image	
1 ()	1'1)	11)	1'1	1
21)	2' 1)	21	2'1	1
31	31)	31	31	1
$4(1)$	4' 1)	41	$4^{\prime} 1$	1
51	5' 1)	51	$5^{\prime} 1$	1

REFLECTION/ANALYSIS

Which direction do " $x=$ any number" equations go? (horizontal or vertical)

What direction do " $y=$ any number" equations go? (horizontal or vertical)

Honors Geometry
Annotate Here

2.3 - Gompositions

Taryet 3-Perform multiple transformations to determine coordinates and Iocation of the imaye

Vocaloulary

Glide Reflection: a transformation in the plane that is a combination of a that line of reflection and a \qquad through a line parallel to

Composition of transformations: When two ore more transformations are combined to form a new transformation.

Example 1: Finn the image of a glide reflection

The vertices of $\triangle A B C$ are $\mathrm{A}(2,1), \mathrm{B}(5,3)$, and $\mathrm{C}(6,2)$. Find the coordinates image of $\triangle A B C$ AFTER the glide relfection.

FIRST: TRANSLATE: $(x, y) \rightarrow(x-8, y)$

THEN REFLECT the translated figure in the x-axis

$A^{\prime}($	$)$
$B^{\prime}($	$)$
$C^{\prime}($	$)$

Coordinates of the GLIDE REFLECTION:

Example 2: Describing the composition of transformations

In the diagram, the coordinates of triangle $A B C$ are given. Describe the composition of transformations from $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Write each rule for each transformation.

Rule for $A B C$ to $A^{\prime} B^{\prime} C^{\prime}$

Rule for $A^{\prime} B^{\prime} C^{\prime}$ to $A " B^{\prime \prime} C^{\prime \prime}$

Annotate Here

1. The vertices of $\triangle A B C$ are $A(-6,2), B(4,-3)$, and $C(4,2)$. Find the coordinates image of $\triangle A B C$ after the glide relfection. Graph and label the composition.

Transformation 1: Reflect in the y axis
Transformation 2: the translated figure $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}-4, \mathrm{y}+7)$

