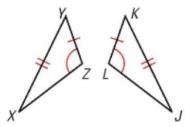
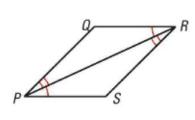

LEVEL: EMERGING

Directions: Determine if it is possible to prove that the triangles are congruent. If so, state what theorem you would use.


1)

Congruent: YES or NO

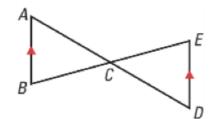
If so, theorem used: _____


2)

Congruent: YES or NO

If so, theorem used: _____

3)


Congruent: YES or NO

If so, theorem used: _____

LEVEL: PROFICIENT

Directions: Determine if it is possible to prove that the triangles are congruent. If so, state what theorem you would use. If not, then state the additional piece of information needed to prove congruence.

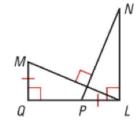
4) $\triangle ABC$, $\triangle DEC$

Congruent: YES or NO

If so, theorem used: _____

If not, extra info: _____

5) ΔTUV , ΔTWV



Congruent: YES or NO

If so, theorem used: _____

If not, extra info:

6) ΔQML , ΔLPN

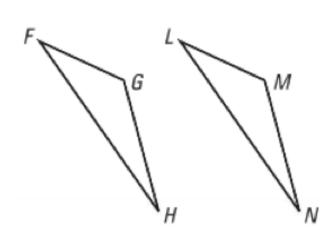
Congruent: YES or NO

If so, theorem used: _____

If not, extra info: _____

Directions: State the third congruence that is needed to prove that $\Delta FGH \cong \Delta LMN$ using the given postulate or theorem.

7) Given: $\overline{GH} \cong \overline{MN}$, $\angle G \cong \angle M$ Use the AAS Congruence Theorem


Answer: _____≅ ____

8) Given: $\overline{FG} \cong \overline{LM}$, $\angle G \cong \angle M$ Use the ASA Congruence Theorem

Answer: ____≅ ____

9) Given: $\overline{FH} \cong \overline{LN}$, $\angle H \cong \angle N$ Use the SAS Congruence Theorem

Answer: ____≅ ____

Directions: Write a two-column proof

10) Given: $\overline{AK} \cong \overline{CJ}$, $\angle BJK \cong \angle BKJ$, $\angle A \cong \angle C$

Prove: $\triangle ABK \cong \triangle CBJ$

Statement	Reason		3
		$A \longrightarrow J$	K

11) Given: \overline{XU} and \overline{WT} bisect each other

Prove: $\overline{WX} \cong \overline{TU}$

Statement	Reason	X
		W

12) Given: $\angle TSU \cong \angle STR$, $\overline{RS} \parallel \overline{TU}$

Prove: $\Delta TSU \cong \Delta STR$

C+-+	D	
Statement	Reason	D. C
		Κ
		т — — — — — — — — — — — — — — — — — — —
		ı U