Geometry Honors
Unit 10: Properties of Parallelograms
10.1b Use Show Quadrilaterals are Parallelograms

Mathematician: \qquad
Period: \qquad

LEVEL: EMERGING

ERROR ANALYSIS

1) A student claims that because two pairs of sides are congruent, quadrilateral $D E F G$ shown at the right is a parallelogram. Describe the error that the student is making.

DEFG is a parallelogram.

REASONING Directions: What property can you use to show that the quadrilateral is a parallelogram?
2)

3)

4)

5) SHORT RESPONSE When you shift gears on a bicycle, a mechanism called a derailleur moves the chain to a new gear. For the derailleur, $J K=5.5 \mathrm{~cm}, K L=2 \mathrm{~cm}, M L=5.5 \mathrm{~cm}$, and $M J=2 \mathrm{~cm}$. Explain why $\overline{J K}$ and $\overline{M L}$ are always parallel as the derailleur moves.

ALGEBRA Directions: For what value of x is the quadrilateral a parallelogram?
6)

7)

LEVEL: PROFICIENT/MASTERY

COORDINATE GEOMETRY Directions: The vertices of quadrilateral ABCD are given. Draw $A B C D$ in a coordinate plane and show that it is a parallelogram. (Concrete algebraic evidence must be shown.)
8) $\quad A(-4,2), B(-1,5), C(5,0), D(2,-3)$

9) $\quad A(-3,2), B(1,5), C(2,0), D(-2,-3)$

Directions: Find the value of x that would make the quadrilateral a parallelogram. Then find the indicated measure.
10) $m \mathrm{SU}=12 x$; $m \mathrm{WW}=3 x+2$ Find the $m S U$.

11) $m \angle \mathrm{POR}=4 x+12 ; m \angle \mathrm{QOR}=$
12) $m \angle \mathrm{BDC}=7 x+2 ; m \angle \mathrm{ADB}=$ $12 x-6 ; m \angle \mathrm{ABD}=3 x+18$ Find the $m \angle D A B$.

13) The diagram shows an automobile lift. A bus drives on to the ramp $(\overline{E G})$. Levers $(\overline{E K}, \overline{F J}$, and $\overline{G H})$ raise the bus. In the diagram, $\overline{E G} \cong \overline{K H}$ and $\overline{E K}=\overline{F J}$. Also. F is the midpoint of $\overline{E G}$, and J is the midpoint of $\overline{K H}$.
a) Identify all of the quadrilaterals in the autombile lift. Explain how you know each one is a parallelogram.

b) Explain why $\overline{E G}$ is always parallel ot $\overline{K H}$.

