Geometry
Unit 1 Geometry Essentials
\qquad
1.2a Lengths of Segments
(using coordinates and segment addition)
LEVEL: EMERGING

Directions: Solve for x.
1)

2)

LEVEL: PROFICIENT

Directions: Find the length of the given segment given the following.
3) a) Find $\overline{M N}$.

b) Find the ratio of $\overline{N M}$ to $\overline{M L}$.
4) a) Find $\overline{P Q}$.

b) Find the ratio of $\overline{P Q}$ to $\overline{Q R}$.
5) The endpoints of $\overline{A B}$ are at $(9,4)$ and $(9,9)$. One of the endpoints of $\overline{C D}$ is at $(-7,1)$. If $\overline{A B} \cong \overline{C D}$, and $\overline{C D}$ is in entirely in the second quadrant, what is the other endpoint of $\overline{C D}$?
(Draw the two line segments on the graph to the right)

6) a) The endpoints of $\overline{M N}$ are at $(7,5)$ and $(7,-2)$. The endpoints of $\overline{G H}$ are at $(6,-10)$ and $(1,-10)$.
(Draw the two line segments on the graph to the right.)

b) Is $\overline{M N} \cong \overline{G H}$? Explain.

LEVEL: MASTERY

Directions: Points A, B and C are collinear, with B in between A and C. Use the following information to solve for the length of the indicated line segment.
7) $\overline{A C}=9 x, \overline{B C}=3 x+8$, and $\overline{A B}=2 x$. Find the length of $\overline{B C}$.
8) $\overline{A B}=x+9, \overline{B C}=x+5$ and $\overline{A C}=7 x+2$. Find the length of $\overline{A C}$.
10) $R S=2 x^{2}+15 x+25, S T=10$ and $\overline{R T}=x^{2}+12 x+45$. Find the length of $\overline{R S}$.
11) a) The endpoints of $\overline{A B}$ are at $(2,1)$ and $(2,6)$. One of the endpoints of $\overline{C D}$ is at $(-10,3)$. If $\overline{A B} \cong \overline{C D}$, and $\overline{C D}$ is in the second quadrant, and is parallel to the x -axis, what is the other endpoint of $\overline{C D}$?

Draw the two line segments on the graph to the right.

b) Draw a line segment $\overline{E F}$ on the graph such that $\overline{A B} \cong \overline{C D} \cong$ $\overline{E F}$. What are the ordered pairs of your endpoints?
\qquad and \qquad

